Development of generalized technique for formation of characteristic functions and Balyuba-Naidysh coordinates in the composition method of geometrical modeling

Authors

  • Yevhen Adoniev Economics and Humanities Faculty of Zaporizhzhia National University, 160A, Heroiv Ukrainy str., Melitopol, Zaporizhzhia region, Ukraine, 72319, Ukraine https://orcid.org/0000-0003-1279-4138
  • Andrii Naidysh Bogdan Khmelnitsky Melitopol State Pedagogical University, 20, Getmanska str., Melitopol, Zaporizhzhia region, Ukraine, 72312, Ukraine https://orcid.org/0000-0003-4057-7085
  • Viktor Vereschaga Bogdan Khmelnitsky Melitopol State Pedagogical University, 20, Getmanska str., Melitopol, Zaporizhzhia region, Ukraine, 72312, Ukraine https://orcid.org/0000-0003-0038-8300

DOI:

https://doi.org/10.15587/2312-8372.2018.141383

Keywords:

Balyuba-Naidysh point calculation, formation of characteristic functions, parametric connection, multifactor modeling

Abstract

The object of the study is the technique for the formation of characteristic functions and Balyuba-Naidysh coordinates (BN-coordinates) in the composite method of geometric modeling. The existing methods of modeling economic, technological and any other processes on real objects are rather complicated, with significant limitations on the number of incoming factors.

One of the most problematic places is the complexity and narrow scope of each of the existing modeling methods, restrains their distribution and practical implementation on real business entities. Hence the need to develop a universal method for modeling multifactor systems. The closest to this is the composite method of geometric modeling (CMGM), the universality of which is ensured, first of all, thanks to the use of the intrinsic technique of generating characteristic functions and BN-coordinates.

The use of the Balyuba curves (B-curves) constructed in BN-coordinates in KMGM gives significant advantages to CMGM. One-, two-, three-parameter B-curve can be considered in the n-dimensional Euclidean space En. As a result, CMGM can be used to solve problems in n-dimensional space, and the result of the solution can be decomposed into n one-dimensional projections, on which it is easy to analyze the solution. This can be used, in particular, in information systems to support management decisions. A feature of the B-curves is that the BN-coordinates p(t); q(t); r(t) are its parametric model, which is a constant. Applying a variety of variants of changing points, it is possible to obtain a lot of variants of B-curves, which is important for carrying out computer experiments in order to increase the adequacy of the constructed geometric model.

The principle of the formation of characteristic functions is the operation of multiplying parameters and artificially assigned coefficients. As a result of the definition the product at the node points becomes zero or one, and in the intervals between nodal points it changes from zero to one. The number of factors of the characteristic function is equal to the number of nodal points that the characteristic function interpolates. The BN-coordinates of one B-curve form a system of interrelated fractional-rational functions.

Thus, a generalizing technique for the algebraic formation of characteristic functions has been developed, and a transition from characteristic functions to BN-coordinates for the interpolation of three points has been determined. The technique used here can also be used for geometric interpolation of four or more points. The possibility of increasing the number of initial points of a geometric figure for BN-interpolation, extends the capabilities of models of multifactor processes and systems.

Author Biographies

Yevhen Adoniev, Economics and Humanities Faculty of Zaporizhzhia National University, 160A, Heroiv Ukrainy str., Melitopol, Zaporizhzhia region, Ukraine, 72319

PhD, Associate Professor

Department of Design and Information Technologies

Andrii Naidysh, Bogdan Khmelnitsky Melitopol State Pedagogical University, 20, Getmanska str., Melitopol, Zaporizhzhia region, Ukraine, 72312

Doctor of Technical Sciences, Professor, Head of Department

Department of Applied Mathematics and Information Technologies

Viktor Vereschaga, Bogdan Khmelnitsky Melitopol State Pedagogical University, 20, Getmanska str., Melitopol, Zaporizhzhia region, Ukraine, 72312

Doctor of Technical Sciences, Professor

Department of Applied Mathematics and Information Technologies

References

  1. Ivanov, G. S. (1987). Konstruirovanie tekhnicheskikh poverkhnostey (matematicheskoe modelirovanie na osnove nelineynykh preobrazovaniy). Moscow: Mashinostroenie, 192.
  2. Kotov, I. I. (1969). Mgnovennye algebraicheskie preobrazovaniya i ikh vozmozhnye prilozheniya. Trudy Moskovskogo aviatsionnogo institute, 191, 71–83.
  3. Obukhova, V. S. (1976). Prikladnaya geometriya poverkhnostey otval'nogo tipa: proceedings. Respublikanskaya konferentsiya po prikladnoy geometrii i inzhenernoy grafike. Kyiv, 76–78.
  4. Mykhailenko, V. Ye., Kuchkarova, D. F. (1997). Heometrychni modeli topohrafichnykh poverkhon v zadachakh proektuvannia. Prykladna heometriia ta inzhenerna hrafika, 62, 53–57.
  5. Pavlenko, O. M. (2013). Doslidzhennia tochnosti protsesu zghushchennia kryvoi skladenoi formy pry rekonstruktsii zasobamy tochkovoho chyslenni Baliuby- Naidysha. Prykladna heometriia ta inzhenerna hrafika, 91, 206–210.
  6. Bakhvalov, N. S. (1971). On the optimality of linear methods for operator approximation in convex classes of functions. USSR Computational Mathematics and Mathematical Physics, 11 (4), 244–249. doi: http://doi.org/10.1016/0041-5553(71)90017-6
  7. Virchenko, H. A. (2003). Proektuvannia ploskykh obvodiv z vykorystanniam kryvykh Bezie tretoho poriadku. Prykladna heometriia ta inzhenerna hrafika, 72, 119–123.
  8. Giannelli, C., Hormann, K., Zagar, E. (2014). Recent trends in theoretical and applied geometry. Computer Aided Geometric Design, 31 (7-8), 329–330. doi: http://doi.org/10.1016/j.cagd.2014.09.002
  9. Naidysh, V. M., Baliuba, Y. H., Vereshchaha, V. M. (2012). Alhebra BN-yschyslenyia. Prykladna heometriia ta inzhenerna hrafika, 90, 210–215. Available at: http://elar.tsatu.edu.ua/handle/123456789/2334
  10. Konopatskyi, Ye. V., Polishchuk, V. I. (2008). Teoretychni osnovy tochkovoho vyznachennia poverkhon zi zminnym sympleksom. Naukovi notatky, 22 (2), 276–281.
  11. Baliuba, Y. H., Horiahyn, B. F., Maliutyna, T. P., Davydenko, Y. P., Konopatskyy, E. V. (2011). Tochechnoe yschyslenye heometrycheskykh form y eho mesto v riadu druhykh sushchestvuiushchykh yschyslenyy. Kompiuterno-intehrovani tekhnolohiii: osvita, nauka, vyrobnytstvo, 6, 24–29. Available at: http://ki.lutsk-ntu.com.ua/node/123/section/6

Published

2018-04-24

How to Cite

Adoniev, Y., Naidysh, A., & Vereschaga, V. (2018). Development of generalized technique for formation of characteristic functions and Balyuba-Naidysh coordinates in the composition method of geometrical modeling. Technology Audit and Production Reserves, 4(2(42), 53–58. https://doi.org/10.15587/2312-8372.2018.141383

Issue

Section

Mathematical Modeling: Original Research